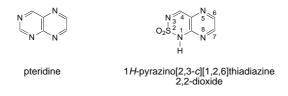
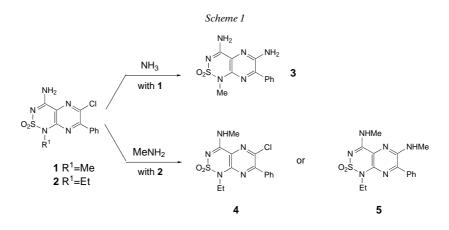
On the Reactivity of 1*H*-Pyrazino[2,3-*c*][1,2,6]thiadiazine 2,2-Dioxide and Derivatives: Nucleophilic Substitution, Amination, Aldol-Type Condensation, Oxidation, and Hydrolysis

by Nuria Campillo, Juan Antonio Páez, and Pilar Goya*

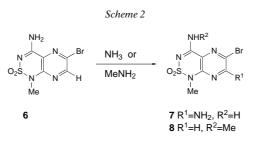

Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid (tel.: 34 91 5622900; fax: 34 91 5644853; e-mail: iqmg310@iqm.csic.es)

This paper is dedicated to Professor W. Pfleiderer on the occasion of his 75th birthday

The reactivity of the 1H-pyrazino[2,3-c][1,2,6]thiadiazine 2,2-dioxide system, structurally related to pteridine, was studied, and a number of novel derivatives were synthesized. The chemical behaviors of these two related fused polyaza systems were compared.


Introduction. – The 1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazine 2,2-dioxide system, first synthesized in our laboratory [1] and structurally related to pteridine, is of considerable pharmaceutical interest since some of its derivatives have shown interesting properties as diuretics, platelet aggregation inhibitors, and bronchodilator agents [2][3]. Particular structural features of this heterocycle are the lack of planarity, as shown by the three different X-ray structures of compounds incorporating this ring system (code CSD [4]: LICZOM [5], SAJWOP [6], WUNTON [7]) and the remarkable acidic character of H-N(1) with pKa values ranging from 1-4 [1][8]. Tautomerism is also an interesting aspect of this heterocycle that we have studied in solution and theoretically by *ab initio* calculations [9].

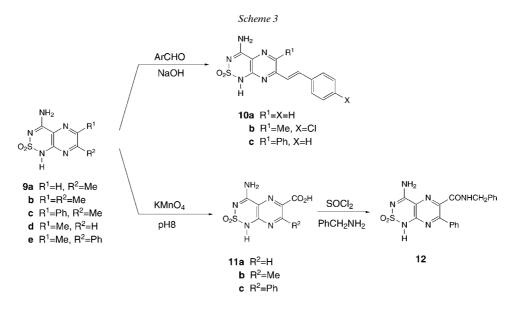
On several occasions, with the aim of optimizing some of the biological activities [10], we had to prepare many different derivatives, and, so, we have studied the reactivity of certain positions of the ring. Thus, we have previously described N(1) alkylation and transamination of the 4-amino group, and we have also studied regioselective syntheses of C(6)- and C(7)-substituted compounds [7][11][12].



In this paper, we wish to report novel reactions of this particular heterocycle at the C(6) and C(7) positions, including S_N displacements of halogen atoms, amination, aldol-type condensations, and oxidation of Me groups. Also, hydrolysis of the amino group at C(4) to the corresponding 4-oxo group and conversion into the 4-thioxo compounds are described here for the first time.

Results and Discussion. – *Reactions with* NH_3 *and* $MeNH_2$. Nucleophilic attack of NH₃ and primary amines at 1-substituted 6-halopyrazinothiadiazine derivatives can occur at three different positions, affording the products of transamination at C(4), aminolysis at C(6), and amination at C(7). Thus, reaction of 6-chloro-1-methyl-7-phenyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine (1) with NH₃, under pressure, afforded the corresponding aminolysis compound, 1H-pyrazino[2,3-c][1,2,6]thiadiazine-4,6-diamine **3**. However, when the 6-chloro-1-ethyl derivative **2** [12]¹) reacted with MeNH₂ in equimolar amounts, the transamination product **4** was obtained. On working with an excess of MeNH₂, it was possible to obtain the 4,6-bis-methylamino compound **5** in which nucleophilic displacement had taken place concomitantly with transamination (*Scheme 1*).

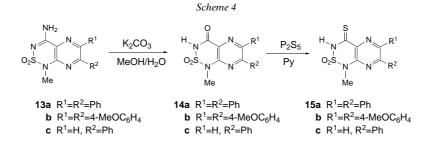
The 6-bromo-1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazin-4-amine **6** showed different behavior, and, thus, with NH₃, the 4,7-diamine derivative **7** was obtained, whereas, with MeNH₂, only the corresponding transamination product **8** could be isolated (*Scheme 2*).



The starting methyl derivatives **1** and **6** and the ethyl derivative **2** [12] were obtained by reaction of the corresponding N(1)-unsubstituted 1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazines with MeI or EtI, respectively, and Et₃N.

¹) In all previously studied reactions, we have shown that 1-methyl and 1-ethyl derivatives do not show any significant differences in their reactivity.

Synthesis of 7-Styrylpyrazinothiadiazines. These compounds were obtained by taking advantage of the acidic character of the 7-Me group of the 7-methyl-1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazines, which can be conveniently deprotonated to afford the synthetically useful carbanions α to the aromatic pyrazine ring. Thus, 7-methyl-1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazinamines **9a** [7], **9b** [1], and **9c** [12] reacted with benzaldehyde and 4-chlorobenzaldehyde in NaOH solution (EtOH/H₂O) to afford the corresponding 7-styryl derivatives **10a** – **c** in good yields (*Scheme 3*).


When this reaction was attempted with the corresponding 6-methyl isomer **9d** [7], only the starting material was recovered due to the less acidic character of the 6-Me group (as has also been observed in the case of pteridines [13]).

Oxidation Reactions. Another reaction that we studied in this particular heterocyclic system is oxidation of the Me group at position 6 to yield the corresponding 6carboxylic acid derivatives, useful synthons for further syntheses.

Reaction of 6-methylpyrazinothiadiazinamines **9b** [1], **9d** [7], and **9e** [12] with KMnO₄ in aqueous basic medium, at pH 8, afforded the 6-carboxylic acids **11a**-**c**. These compounds can be used to prepare amides and thus, **11c** with SOCl₂ and PhCH₂NH₂ afforded **12** (*Scheme 3*). It is worth mentioning that, in the case of **9b**, the Me group at C(7) was not affected under these conditions.

Synthesis of Pyrazinothiadiazin-4-ones and -4-thiones. Hydrolysis of the 4-amino group provides an entry to the corresponding 4-oxo derivatives and so, the 1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazin-4-amines **13a** [14], **13b** [10], and **13c** [11] were readily converted to the 1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazin-4(3*H*)-ones **14a** – **c** by reaction with K₂CO₃ in MeOH/H₂O (*Scheme 4*). It should be mentioned that the parent 1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazin-4(3*H*)-one 2,2-dioxide system had previously been synthesized by us, by reaction of 4,5-diamino-2*H*-1,2,6-thiadiazin-3(6*H*)-one 1,1-dioxide and 1,2-dicarbonyl compounds [1]. However, the starting 4,5-diamino-2*H*-

1,2,6-thiadiazin-3(6H)-one 1,1-dioxide [15] is difficult to prepare, and, so, this is a much more versatile method to obtain 4-oxo derivatives.

Finally, the 1*H*-pyrazino[2,3-*c*][1,2,6]thiadiazin-4(3*H*)-ones **14a** – **c** were converted to the hitherto unknown 4-thioxo derivatives **15a** – **c**, respectively, by reaction with P_2S_5 (*Scheme 4*).

The structures of all the newly synthesized compounds were established by analytical and spectroscopic data, including ¹H- and ¹³C-NMR data (see *Tables 1* and 2). The assignments of all compounds by their ¹³C-NMR spectra was achieved by analysis of the chemical shifts and long-range-coupling constants and by comparison with other structures of these series.

Table 1. Melting Points of 1H-Pyrazino[2,3-c][1,2,6]thiadiazine 2,2-Dioxides 1, 3-8, 10-12, 14, and 15

	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	M.p. [°]	Recryst. solvent
1	Cl	Ph	Me	NH_2	230-231	MeOH/H ₂ O
3	NH_2	Ph	Me	NH_2	310-312	-
4	Cl	Ph	Et	NHMe	250 - 252	EtOH/H ₂ O
5	NH Me	Ph	Et	NHMe	260 - 262	H_2O
6	Br	Н	Me	NH_2	227-229	EtOH/H ₂ O
7	Br	NH ₂	Me	NH_2	275 - 277	MeOH
8	Br	Н	Me	NHMe	325-326	MeOH
10a	Н	Ph-CH=CH	Н	NH_2	> 350	EtOH/H ₂ O
b	Me	$4-ClC_6H_4-CH=CH$	Н	NH_2	310-312	MeOH/H ₂ O
с	Ph	Ph-CH=CH	Н	NH_2	293-295	EtOH/H ₂ O
11a	COOH	Н	Н	NH_2	> 350	EtOH/H ₂ O
b	COOH	Me	Н	NH_2	> 350	MeOH/H ₂ O
с	COOH	Ph	Н	NH_2	244 - 246	EtOH/H ₂ O
12	CONHCH ₂ Ph	Ph	Н	NH_2	> 350	MeOH/H ₂ O
14a	Ph	Ph	Me	Ο	255 - 257	H ₂ O/MeOH
b	$4-MeOC_6H_4$	$4-MeOC_6H_4$	Me	Ο	260 - 261	H ₂ O/MeOH
с	Н	Ph	Me	О	132 - 134	H ₂ O/MeOH
15a	Ph	Ph	Me	S	265 - 267	EtOH/H ₂ O
b	4-MeOC ₆ H ₄	4-MeOC ₆ H ₄	Me	S	258-259	MeOH/H ₂ O
c	Н	Ph	Me	S	210 - 211	EtOH

Table 2. ¹³C-NMR Spectral Data ((D₆)DMSO) for Compounds 1, 3-8, 10-12, 14, and 15. δ in ppm.

	C(4)	C(7)	C(8a)	C(6)	C(4a)	Other signals
1	157.3	155.6	147.0	136.5	121.0	135.2; 130.6; 129.7; 128.3; 38.3; 13.8
3	159.1	144.3	141.9	147.9	118.9	135.9; 130.1; 128.9; 128.5; 28.2
4	155.5	155.3	146.7	136.7	121.4	135.3; 130.8; 129.8; 128.5; 28.2; 38.5;13.9
5	157.7	148.2	146.0	140.0	119.1	135.3; 130.4; 129.2; 128.6; 37.8; 28.0; 37.8; 14.5
6	157.3	150.9	148.5	129.1	123.3	28.6
7	158.6	155.9	150.1	117.3	111.7	28.7
8	155.2	150.7	147.8	129.3	124.2	28.3; 28.7
10a	158.8	158.8	149.0	137.9	121.0	138.8; 123.8; 135.6; 130.4; 129.5; 128.3
b	158.6	151.0	147.7	145.6	120.2	138.0; 123.2; 136.5; 135.4; 129.8; 129.1; 128.9; 128.4; 127.6
с	158.6	152.1	147.1	145.4	119.9	137.2; 134.4; 134.2; 131.2; 129.8; 129.0; 122.9; 20.8
11a	157.5	149.2	151.4	132.6	120.2	163.8
b	157.3	160.0	148.9	132.1	118.8	165.6; 136.3; 130.3; 128.6; 128.3
с	157.5	157.1	148.8	136.7	119.2	163.9; 23.0
12	158.5	158.5	140.1	139.4	116.7	135.1; 133.9; 129.9; 129.6; 129.6; 129.2; 129.1;
						120.0; 128.7; 128.0; 127.8; 127.4; 127.1; 123.9
14a	163.5	153.9	147.7	145.1	124.1	133.5; 128.9; 128.2; 128.5; 137.8; 137.3; 127.8;
						129.5; 129.4; 128.1; 28.4
b	163.5	151.3	147.9	143.5	125.6	160.3; 159.8; 131.4; 113.9; 131.0; 55.4; 55.4
с	163.6	153.3	149.2	134.5	124.7	134.6; 131.4; 129.1; 126.7; 28.3
15a	162.7	152.5	147.7	145.0	124.0	129.5; 129.0; 128.4; 128.2; 28.3
b	161.1	155.2	147.0	145.9	119.9	160.9; 159.6; 130.6; 129.0; 113.5; 113.5; 55.3; 55.2; 28.5
с	162.7	152.8	149.0	133.7	125.2	134.6; 130.7; 128.7; 127.3; 27.9

In conclusion, we have studied the reactivity at different positions and of different substituents of a peculiar pteridine-like heterocycle, the 1H-pyrazino[2,3-c][1,2,6]thia-diazine 2,2-dioxide. In some cases, it behaves similarly to its structural analogue, isopterine, as for example in the reactivity of the 7-methyl group towards aldol-type condensations and of the 6-methyl group towards oxidating agents [16-18].

However, when not the reactivity of the substituents but that of the heterocycle itself is concerned, the pyrazino[2,3-c][1,2,6]thiadiazine system behaves differently and, for example, the direct amination at C(7) described here, or an unexpected alkoxylation with *N*-bromo- or *N*-chlorosuccinimide and alcohols that we have recently reported [19], are unprecedented in the pteridine series.

Experimental Part

General. Column chromatography (CC): silica gel (Merck, particle size 70–230 mesh). M.p.: Reichert-Jung-Thermovar micro-melting-point apparatus; uncorrected. ¹H- and ¹³C-NMR Spectra: at 300 (¹H) and 75 MHz (¹³C); Gemini- or Varian-XL-300 spectrometer; (D₆)DMSO solns; δ in ppm, with the signal of the solvent as reference; J in Hz; δ (C) in Table 2. Mass spectra: EI, at 70 eV; VG-12-250 spectrometer (VG Masslab). Elemental analyses: Heraeus CHN-O-Rapid analyzer.

*1-Methyl-1*H-*pyrazino*[2,3-c][1,2,6]*thiadiazin-4-amine* 2,2-*Dioxides* 1 and 6: *General Procedure.* To the corresponding 1*H*-pyrazino[2,3-c][1,2,6]*thiadiazin-4-amine* 2,2-dioxide derivative in acetone and Et₃N, the alkyl halide was added. The mixture was refluxed and then evaporated. H₂O was added to the residue and the precipitate filtered and recrystallized from the appropriate solvent (see *Table 1*).

6-Chloro-1-methyl-7-phenyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-Dioxide (1). From 6-chloro-7-phenyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-doxide (1.90 g, 16.1 mmol), acetone (80 ml), Et₃N (0.9 ml, 6.1 mmol), and MeI (1.9 ml, 33.5 mmol), reaction time 4 d: 1.68 g (86%) of 1. ¹H-NMR: 3.41 (*t*, Me);

7.54 - 7.59 (m, 3 arom. H); 7.86 - 7.92 (m, 2 arom. H); 8.87 (br. s, 1 H, NH₂); 8.96 (br. s, 1 H, NH₂). Anal. calc. for C₁₂H₁₀ClN₅O₂S (323.73): C 46.22, H 3.58, Cl 10.49, N 20.73, S 9.49; found: C 46.50, H 3.43, Cl 10.35, N 20.88, S 9.30.

*1-Methyl-7-phenyl-1*H-*pyrazino[2,3-c][1,2,6]thiadiazine-4,6-diamine 2,2-Dioxide* (3). Compound 1 was treated with an excess of liquid NH₃ in a sealed tube at 80° for 6 d. Then, NH₃ was evaporated and the residue purified by CC (SiO₂, CH₂Cl₂/MeOH): 0.13 g (44%) of 3. ¹H-NMR: 3.33 (*t*, Me); 6.16 (*s*, NH₂); 7.44–7.70 (*m*, 3 arom. H); 7.86–7.88 (*m*, 2 arom. H); 8.09 (br. *s*, 1 H, NH₂); 8.67 (br. *s*, 1 H, NH₂). Anal. calc. for $C_{12}H_{12}N_6O_2S$ (303.33): C 49.82, H 3.83, N 24.20, S 11.08; found: C 49.47, H 4.04, N 23.97, S 11.17.

6-*Chloro-1-ethyl*-N⁴-*methyl*-7-*phenyl*-1H-*pyrazino*[2,3-c][1,2,6]*thiadiazin*-4-*amine* 2,2-*Dioxide* (4). From 2 (0.80 g, 2.4 mmol) in dry EtOH (80 ml) and MeNH₂ (33% in EtOH; 0.30 ml, 2.4 mmol) in a sealed tube at 80° for 48 h. The solvent was evaporated and the residue recrystallized from EtOH/H₂O: 0.48 g (60%) of 4. ¹H-NMR: 1.32 (*t*, Me); 2.94 (*d*, Me); 4.06 (*q*, CH₂); 7.40-7.67 (*m*, 3 arom. H); 7.75-7.93 (*m*, 2 arom. H); 9.39 (*m*, NH). Anal. calc. for C₁₄H₁₄ClN₅O₂S (351.81): C 47.79, H 4.01, Cl 10.08, N 19.91, S 9.11; found: C 47.69, H 4.21, Cl 10.03, N 19.71, S 9.21.

*1-Ethyl-*N⁴, N⁶-*dimethyl-7-phenyl-1*H-*pyrazino[2,3-c][1,2,6]thiadiazine-4,6-diamine 2,2-Dioxide* (**5**). From **2** (0.50 g, 1.5 mmol) in dry EtOH (50 ml) and MeNH₂ (33% in EtOH; 1.80 ml, 2.4 mmol) in a sealed tube at 80° for 6 d. The solvent was evaporated and the residue recrystallized from H₂O: 0.27 g (54%) of **5**. ¹H-NMR: 1.26 (*m*, NH); 2.88 (*d*, Me); 2.95 (*s*, Me); 3.95 (*q*, CH₂); 6.60 (*m*, NH); 7.53–7.67 (*m*, 3 arom. H); 7.78–7.81 (*m*, 2 arom. H); 8.70 (br. *s*, NH). Anal. calc. for C₁₅H₁₈N₆O₂S (346.41): C 52.01, H 5.24, N 24.26, S 9.26; found: C 52.11, H 5.41, N 24.60, S 9.21.

6-Bromo-1-methyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-Dioxide (6). From 6-bromo-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-dioxide (3.00 g, 10.1 mmol), acetone (150 ml), Et₃N (1.4 ml, 10.1 mmol), and MeI (1.7 ml, 30.3 mmol), reaction time 24 h: 2.40 g (82%) of 6. ¹H-NMR: 3.37 (*s*, Me); 8.86 (br. *s*, NH₂); 8.90 (br. *s*, 1 H, NH₂); 8.97 (br. *s*, 1 H, NH₂). Anal. calc. for $C_6H_6BrN_5O_2$ (292.11): C 24.67, H 2.07, Br 27.35, N 23.97, S 10.97; found: C 24.80, H 2.24, Br 27.12, N 24.06, S 11.85.

6-Bromo-1-methyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4,7-diamine 2,2-Dioxide (7). From 6 (0.60 g, 1.0 mmol) with an excess of liquid NH₃ in a sealed tube at r.t. for 10 d. NH₃ was evaporated and the residue recrystallized from H₂O/MeOH: 0.37 g (60%) of 7. ¹H-NMR: 3.25 (*s*, Me); 8.10 (br. *s*, NH₂); 8.10 (*s*, H–C(7)); 8.26 (br. s). EI-MS: 306 (M^{++}). Anal. calc. for C₆H₇BrN₅O₂S (307.12): C 23.46, H 2.30, Br 26.02, N 27.36, S 10.44; found: C 23.40, H 2.49, Br 26.10, N 27.60, S 10.54.

6-Bromo-N⁴,1-dimethyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-Dioxide (**8**). From **6** (0.30 g, 1.0 mmol) in dry EtOH (15 ml) and MeNH₂ (33% in EtOH; 0.4 ml, 3.0 mmol) in a sealed tube at r.t. for 48 h. The solvent was evaporated and the residue recrystallized from MeOH: 0.13 g (44%) of **8**. ¹H-NMR: 2.93 (br. *s*, Me); 3.29 (*s*, Me); 8.89 (*s*, H–C(7)); 9.39 (br. *s*, NH). EI-MS: 307 (M^{++}). Anal. calc. for C₇H₈BrN₅O₂S (306.14): C 27.46, H 2.63, Br 26.10, N 22.87, S 10.47; found: C 27.51, H 2.72, Br 26.44, N 22.67, S 10.21.

Compounds **10a** – **c**: *General Procedure.* To a soln. of the corresponding 7-methyl-1*H*-pyrazino-[2,3-*c*][1,2,6]thiadiazin-4-amine 2,2-dioxide **9a** – **c** (1.0 mmol) in H₂O (50 ml), benzaldehyde (2.0 mmol) and NaOH (2.0 mmol) in EtOH (10 ml) were added, and the mixture was refluxed for 72 h. The soln. was acidified with conc. HCl soln., and the precipitate was filtered and recrystallized from the appropriate solvent (*Table 1*).

7-(2-Phenylethenyl)-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-Dioxide (10a). From 9a (0.50 g, 2.5 mmol), NaOH (0.19 g, 5.0 mmol), H₂O (125 ml), benzaldehyde (0.8 ml, 5.0 mmol), and EtOH (10.0 ml): 0.21 g (40%) of 10a. ¹H-NMR: 7.39-7.47 (m, CH=CH, 1 arom. H); 7.39-7.47 (m, 2 arom. H); 7.70-7.73 (m, 2 arom. H); 7.86 (d, J = 16.2, CH=CH); 8.56 (s, H-C(6)); 8.57 (br. s, NH₂); 12.16 (br. s, NH). Anal. calc. for C₁₃H₁₁N₅O₂S (301.33): C 51.82, H 3.68, N 23.24, S 10.64; found: C 51.59, H 3.86, N 23.17, S 10.44.

7-[2-(4-Chlorophenyl)ethenyl]-6-methyl-IH-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-Dioxide (10b). From 9b (2.00 g, 8.8 mmol), NaOH (0.70 g, 17.6 mmol), H₂O (200 ml), 4-chlorobenzaldehyde (2.50 g, 17.6 mmol), and EtOH (20 ml): 1.52 g (50 %) of 10b. ¹H-NMR: 2.67 (*s*, Me); 7.50 (*d*, 2 arom. H); 7.56 (*d*, J = 18.7, CH=CH); 7.74 (*d*, CH=CH); 7.81 (*d*, 2 arom. H); 8.36 (br. *s*, 1 H, NH₂); 8.52 (br. *s*, 1 H, NH₂); 11.96 (br. *s*, 1 H, NH). Anal. calc. for C₁₄H₁₄ClN₅O₂S (349.79): C 48.07, H 3.46, Cl 10.14, N 20.02, S 9.17; found: C 48.03, H 3.75, Cl 10.22, N 20.12, S 9.21.

6-Phenyl-7-(2-phenylethenyl)-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-Dioxide (10c). From 9c (0.40 g, 1.9 mmol) in NaOH (38 ml, 0.05N) and benzaldehyde (1.20 g, 7.6 mmol): 0.12 g (28%) of 10c. ¹H-NMR: 7.24 (d, CH=CH, 1 arom. H); 7.39–7.42 (m, 3 arom. H); 7.53–7.56 (m, 5 arom. H); 7.70–7.76 (m, 2 arom. H); 7.85 (d, J = 14.8, CH=CH); 8.38 (br. s, 1 H, NH₂); 8.51 (br. s, 1 H, NH₂). Anal. calc. for C₁₉H₁₅N₅O₂S (377.00): C 60.46, H 4.00, N 18.55, S 8.49; found: C 60.31, H 3.95, N 18.31, S 8.32.

Compounds **11a**–**c**: *General Procedure.* To a soln. of the corresponding 6-methyl-1*H*-pyrazino[2,3-*c*]-[1,2,6]thiadiazine 2,2-dioxide derivative (1.0 mmol) in 0.05N aq. NaOH (140 ml), conc. HCl soln. was added until pH 8, followed by KMnO₄ (4.0 mmol). The mixture was refluxed for 24 h. After cooling, NaHSO₃ was added and the mixture stirred for 10 min. The precipitate was filtered and the soln. was acidified with conc. HCl soln. The precipitate was filtered and the appropriate solvent (*Table 1*): **11a**–**c**.

4-Amino-1H-pyrazino[2,3-c][1,2,6]thiadiazine-6-carboxylic Acid 2,2-Dioxide (11a). From 9d (0.40 g, 1.9 mmol), in 0.05N aq. NaOH (38 ml) and KMnO₄ (1.20 g, 7.6 mmol): 0.12 g (28%) of 11a. ¹H-NMR: 8.65 (br. s, 1 H, NH₂); 8.68 (br. s, 1 H, NH₂); 9.03 (s, H–C(7)). Anal. calc. for C₆H₅N₅O₄S (243.20): C 29.63, H 2.07, N 28.79, S 13.18; found: C 29.51, H 2.02, N 28.69, S 12.98.

*4-Amino-7-methyl-1*H-*pyrazino[2,3-c][1,2,6]thiadiazine-6-carboxylic Acid 2,2-Dioxide* (**11b**). From **9b** (0.40 g, 1.9 mmol), 0.05 n aq. NaOH (38 ml), and KMnO₄ (1.20 g, 7.6 mmol): 0.12 g (28%) of **11b**. ¹H-NMR: 2.75 (*s*, Me); 8.60 (br. *s*, 1 H, NH₂); 8.83 (br. *s*, 1 H, NH₂). Anal. calc. for $C_7H_7N_5O_4S$ (257.22): C 32.69, H 2.74, N 27.23, S 12.46; found: C 32.33, H 2.57, N 27.19, S 12.18.

4-Amino-7-phenyl-1H-pyrazino[2,3-c][1,2,6]thiadiazine-6-carboxylic Acid 2,2-Dioxide (11c). From 9e (1.90 g, 6.6 mmol), 0.05N aq. NaOH (140 ml), and KMnO₄ (4.82 g, 24.4 mmol): 0.52 g (24%) of 11c. ¹H-NMR: 7.51–7.66 (*m*, 5 arom. H); 8.75 (br. *s*, 1 H, NH₂); 8.79 (br. *s*, 1 H, NH₂). Anal. calc. for C₁₂H₉N₅O₂S (319.29): C 45.14, H 2.84, N 21.93, S 10.04; found: C 45.10, H 2.95, N 21.61, S 10.00.

4-Amino-N⁶-benzyl-7-phenyl-1H-pyrazino[2,3-c][1,2,6]thiadiazine-6-carboxamide 2,2-Dioxide (**12**). A soln. of **9e** (0.50 g, 1.76 mmol) in SOCl₂ (3.2 ml, 44.0 mmol) was refluxed for 3 h. After careful removal of SOCl₂ in vacuo, the residue was treated with CHCl₃ (15 ml) and PhCH₂NH₂ (1.5 ml, 13.7 mmol), and the soln. was stirred at r.t. for 12 h. The soln. was neutralized with 2N HCl and the solvent evaporated. The residue was recrystallized from MeOH/H₂O: 0.30 g (41%) of **12**. ¹H-NMR: 4.38 (*d*, PhCH₂); 7.20–7.77 (*m*, 10 arom. H); 8.14 (br. *s*, NH₂); 9.33 (*m*, CONH). Anal. calc. for $C_{19}H_{16}N_6O_3S$ (408.10): C 55.87, H 3.95, N 20.59, S 7.83; found: C 55.50, H 3.81, N 20.51, S 8.01.

IH-Pyrazino[2,3-c][1,2,6]thiadiazin-4(3H)-one 2,2-Dioxides **14a**-c: General Procedure. To a suspension of 1-methyl-1*H*-pyrazino[2,3-c][1,2,6]thiadiazin-4-amine 2,2-dioxide **13** (1.1 mmol) in MeOH/H₂O 1:1 (40 ml), K₂CO₃ (0.5 g, 3.6 mmol) was added. The mixture was refluxed for 2 h, then MeOH was evaporated, and the soln. was acidified with conc. HCl soln. The precipitate was filtered and recrystallized from the appropriate solvent (see *Table 1*).

1-Methyl-6,7-*diphenyl-1*H-*pyrazino[2,3-c][1,2,6]thiadiazin-4(3*H)-*one 2,2-Dioxide* (**14a**). From **13a** (1.50 g, 3.5 mmol), MeOH/H₂O 1:1 (160 ml), and K₂CO₃ (1.60 g, 13.9 mmol): 1.30 g (90%) of **14a**. ¹H-NMR: 3.41 (*s*, Me); 7.33–7.46 (*m*, 10 arom. H). Anal. calc. for $C_{18}H_{14}N_4O_3S \cdot H_2O$ (366.40): C 56.24, H 4.19, N 14.57, S 8.34; found: C 56.62, H 4.39, N 14.92, S 8.21.

6,7-Bis(4-methoxyphenyl)-1-methyl-1H-pyrazino[2,3-c][1,2,6]thiadiazin-4(3H)-one 2,2-Dioxide (14b). From 13b (1.50 g, 3.5 mmol), MeOH/H₂O 1:1 (100 ml), and K₂CO₃ (1.90 g, 11.9 mmol): 1.10 g (70%) of 14b. ¹H-NMR: 3.31 (*s*, Me); 3.73 (*s*, 2 MeO); 7.32–7.54 (*m*, 4 arom. H); 7.30–7.41 (*m*, 4 arom. H). Anal. calc. for $C_{20}H_{18}N_4O_5S$ (426.45): C 56.33, H 4.25, N 13.64, S 7.52; found: C 56.72, H 4.49, N 13.92, S 7.21.

*1-Methyl-7-phenyl-1*H-*pyrazino[2,3-c][1,2,6]thiadiazin-4(3*H)-*one 2,2-Dioxide* (14c). From 13c (1.00 g, 3.5 mmol), MeOH/H₂O (120 ml), and K₂CO₃ (1.9 g, 11.9 mmol): 0.90 g (92%) of 14c. 1 H-NMR: 3.49 (*s*, Me); 7.57–7.59 (*m*, 3 arom. H); 8.25–8.29 (*m*, 2 arom. H); 9.04 (*s*, H–C(6)). Anal. calc. for $C_{12}H_{10}N_4O_3S$ (290.29): C 49.65, H 3.47, N 19.29, S 11.04; found: C 49.72, H 3.49, N 19.52, S 11.21.

IH-Pyrazino[2,3-c][1,2,6]thiadiazin-4(3H)-thione 2,2-Dioxides **15a**-**c**. General Procedure. A soln. of the 1H-pyrazino[2,3-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide **14** (1.0 mmol) in anh. pyridine (20 ml) was treated with P_2S_5 (2.5 mmol) and then refluxed for 48 h. The soln. was acidified with conc. HCl soln. and evaporated. The residue was dissolved in sat. NaHCO₃ soln. and then, conc. HCl soln. was added. The precipitate was filtered and recrystallized from the appropriate solvent (see Table 1)

*1-Methyl-6,7-diphenyl-1*H-*pyrazino*[2,3-c][1,2,6]*thiadiazin-4*(3H)*-thione* 2,2-*Dioxide* (**15a**). From **14a** (1.50 g, 4.2 mmol), pyridine (80 ml), and P_2S_5 (2.40 g, 10.5 mmol): 0.71 g (50%) of **15a**. ¹H-NMR: 3.47 (*s*, Me); 7.36–7.47 (*m*, 10 arom. H). Anal. calc. for $C_{18}H_{14}N_4O_2S_2$ (382.40): C 53.61, H 3.94, N 15.63, S 17.89; found: C 53.82, H 3.59, N 15.92, S 17.54.

1-Methyl-6,7-*bis*(4-*methoxyphenyl*)-*1*H-*pyrazino*[2,3-c][1,2,6]*thiadiazin-4*(3H)-*thione* 2,2-*Dioxide* (**15b**). From **14b** (1.00 g, 3.5 mmol), pyridine (60 ml), and P_2S_5 (2.00 g, 8.7 mmol): 0.40 g (42%) of **15b**. ¹H-NMR: 3.34 (*s*, Me); 3.78 (*s*, 2 MeO); 6.89–7.00 (*m*, 4 arom. H); 7.32–7.54 (*m*, 4 arom. H). Anal. calc. for $C_{20}H_{18}N_4O_5S$ (442.45): C 58.52, H 4.42, N 13.65, S 15.62; found: C 58.77, H 4.59, N 13.92, S 15.21.

*1-Methyl-7-phenyl-1*H-*pyrazino[2,3-c][1,2,6]thiadiazin-4(3*H)-*thione 2,2-Dioxide* (**15c**). From **14c** (1.50 g, 6.0 mmol), pyridine (100 ml), and P_2S_5 (3.40 g, 15.0 mmol): 0.72 g (44%) of **15c**. ¹H-NMR: 3.71 (*s*, Me);

7.61 – 7.65 (*m*, 3 arom. H); 8.35 – 8.39 (*m*, 2 arom. H); 9.12 (*s*, H – C(6)). Anal. calc. for $C_{12}H_{10}N_4O_2S_2$ (306.36): C 47.05, H 3.29, N 18.29, S 20.93; found: C 47.20, H 3.51, N 18.63, S 20.60.

REFERENCES

- [1] P. Goya, J. A. Páez, W. Pfleiderer, J. Heterocycl. Chem. 1984, 21, 861.
- [2] E. Carrasco, P. Goya, M. Grau, J. A. Páez, Eur. Pat. Appl. EP 580916, 1994.
- [3] E. Carrasco, P. Goya, M. Grau, J. A. Páez, U. S. Patent 5,580,869, 1996.
- [4] F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchell, J. M. Smith, D. G. Watson, J. Chem. Inf. Comput. Sci. 1991, 31, 187.
- [5] A. de la Cruz, P. Goya, J. A. Páez, M. Martínez-Ripoll, Liebigs Ann. Chem. 1994, 629.
- [6] J. Elguero, P. Goya, J. A. Páez, C. Foces-Foces, F. H. Cano, M. Martínez-Ripoll, J. Mol. Struct. 1988, 172, 423.
- [7] P. Goya, J. A. Páez, I. Alkorta, E. Carrasco, M. Grau, F. Antón, S. Juliá, M. Martínez-Ripoll, J. Med. Chem. 1992, 35, 3977.
- [8] P. Goya, J. A. Páez, Liebigs Ann. Chem. 1988, 121.
- [9] N. Campillo, I. Alkorta, J. A. Páez, P. Goya, J. Chem. Soc., Perkin Trans. 2 1998, 1889.
- [10] N. Campillo, P. Goya, J. A. Páez, J. Med. Chem. 1999, 42, 3279.
- [11] N. Campillo, C. García, P. Goya, I. Alkorta, J. A. Páez, J. Med. Chem. 2000, 43, 4219.
- [12] N. Campillo, C. Garcia, P. Goya, J. A. Páez, E. Carrasco, M. Grau, J. Med. Chem. 1999, 42, 1698.
- [13] W. Pfleiderer, in 'Comprehensive Heterocyclic Chemistry II', Eds. A. R. Katritzky, C. W. Rees, and E. F. V. Scriven, Elsevier Science Ltd., UK, 1996, Vol. 7, p. 737.
- [14] P. Goya, J. A. Páez, W. Pfleiderer, J. Heterocycl. Chem. 1990, 27, 785.
- [15] C. Ochoa, M. Stud, J. Heterocycl. Chem. 1978, 15, 221.
- [16] D. J. Brown, in 'The Chemistry of Heterocyclic Compounds', Ed. E. C. Taylor, Wiley Interscience, New York, 1988, Vol. 24, Part 3, Chapt. 4, p. 165.
- [17] E. M. Kaiser, Tetrahedron 1983, 39, 2055.
- [18] E. M. Kaiser, S. L. Hartzell, J. Org. Chem. 1977, 42, 2951.
- [19] N. Campillo, P. Goya, J. A. Páez, Eur. J. Org. Chem. 2002, 2109.

Received April 29, 2002